Assessing dietary changes of bats in the wake of White-nose Syndrome

Shelby A. Fulton¹, Luke E. Dodd¹, and Lynne K. Rieske-Kinney²

¹Department of Biological Sciences, Eastern Kentucky University, Richmond, KY, 40475.

²Department of Entomology, University of Kentucky, Lexington, KY, 40546.

Introduction

- White-nose Syndrome has caused dramatic mortality in eastern North America's bats
- The resulting shifts in bat community structure may be accompanied by dietary shifts
- Lepidoptera are a core resource for most North American bats
- Energetic profitability may vary among Lepidopteran species
- Prey consumption likely relates to trends in prey nutritive quality

Objectives

- Evaluate the nutritive quality of Lepidopteran prey at Mammoth Cave National Park
- Determine whether bat dietary composition has changed since the arrival of White-nose Syndrome

Calorimetry Methods

- Malacosoma americanum and Trichoplusia ni were reared in the laboratory
- Halysidota tessellaris and Iridopsis sp. were field-collected on an illuminated substrate
- Finely ground moth samples (ca. 250 mg) were combusted in a bomb calorimeter to determine the gross heat generated (calories / gram)

Molecular Analysis Methods

- Bats are captured at the entrance of Colossal Cave in the fall and spring
- Fecal material from captured bats is preserved in 95% ethanol
- Prey DNA will be extracted from fecal material, amplified, and sequenced
- Sequenced prey DNA will be identified to species using reference arthropod sequences

Illuminated substrate used to attract Lepidoptera

Calorimetry Results

- Kruskal-Wallis tests were used to make pairwise comparisons
- Differences in caloric yield between
 M. americanum and Iridopsis sp.
 were significant (P = 0.03)
- No differences in caloric yields of
 - T. ni and M. americanum
 - T. ni and H. tessellaris
 - M. americanum and H. tessellaris
 - *H. tessellaris* and *Iridopsis* sp.

Discussion and Future Work

- Results indicate that a variety of Lepidoptera may be of similar prey quality; future research will include additional insect orders
- Molecular analyses of bat diets are ongoing; results will be compared to dietary data collected prior to the arrival of WNS

Acknowledgments

- Many thanks to Rick Toomey and Shannon Trimboli at NPS, Steve Thomas at CUPN, Rachael Griffitts at EKU, and Abe Nielsen at UK
- JFSP, USDA-FS, EKU BIOS, UK CAFE